Quadratic partial eigenvalue assignment problem with time delay for active vibration control
نویسندگان
چکیده
Partial pole assignment in active vibration control refers to reassigning a small set of unwanted eigenvalues of the quadratic eigenvalue problem (QEP) associated with the second order system of a vibrating structure, by using feedback control force, to suitably chosen location without altering the remaining large number of eigenvalues and eigenvectors. There are several challenges of solving this quadratic partial eigenvalue assignment problem (QPEVAP) in a computational setting which the traditional pole-placement problems for firstorder control systems do not have to deal with. In order to these challenges, there has been some work in recent years to solve QPEVAP in a computationally viable way. However, these works do not take into account of the practical phenomenon of the time-delay effect in the system. In this paper, a new “direct and partial modal” approach of the quadratic partial eigenvalue assignment problem with time-delay is proposed. The approach works directly in the quadratic system without requiring transformation to a standard state-space system and requires the knowledge of only a small number of eigenvalues and eigenvectors that can be computed or measured in practice. Two illustrative examples are presented in the context of active vibration control with constant time-delay to illustrate the success of our proposed approach. Future work includes generalization of this approach to a more practical complex time-delay system and extension of this work to the multi-input problem.
منابع مشابه
Eigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays
Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...
متن کاملMinimum Norm Partial Quadratic Eigenvalue Assignment with Time Delay in Vibrating Structures Using the Receptance and the System Matrices
The partial quadratic eigenvalue assignment problem (PQEAP) is to compute a pair of feedback matrices such that a small number of unwanted eigenvalues in a structure are reassigned to suitable locations while keeping the remaining large number of eigenvalues and the associated eigenvectors unchanged. The problem arises in active vibration control of structures. For real-life applications, it is...
متن کاملPartial Eigenvalue Assignment in Discrete-time Descriptor Systems via Derivative State Feedback
A method for solving the descriptor discrete-time linear system is focused. For easily, it is converted to a standard discrete-time linear system by the definition of a derivative state feedback. Then partial eigenvalue assignment is used for obtaining state feedback and solving the standard system. In partial eigenvalue assignment, just a part of the open loop spectrum of the standard linear s...
متن کاملQuadratic Inverse Eigenvalue Problems, Active Vibration Control and Model Updating
This paper presents a brief review of recent developments on quadratic inverse eigenvalue problem with applications to active vibration control and finite element model updating.
متن کاملRobust and Minimum Norm Partial Quadratic Eigenvalue Assignment in Vibrating Systems: A New Optimization Approach
The partial quadratic eigenvalue assignment problem (PQEVAP) concerns reassigning a few undesired eigenvalues of a quadratic matrix pencil to suitably chosen locations and keeping the other large number of eigenvalues and eigenvectors unchanged (no spill-over). The problem naturally arises in controlling dangerous vibrations in structures by means of active feedback control design. For practica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009